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Résumé. Nous proposons ici un modèle d’association pour estimer la pénétrance (risque) de
cancers successifs en présence d’évènements compétitifs. L’association entre les deux évènements
successifs est spécifiée à partir d’une fonction Copule et un modèle de hasards proportionnels
est utilisé pour chaque évènement compétitif. Ce travail est motivé par l’analyse de cancers
successifs chez des individus ayant le syndrome de Lynch. La procédure d’inférence statistique
est adaptée à la prise en compte de covariables génétiques manquantes ainsi que le biais de
sélection induit par le recrutement de familles ayant plusieurs individus atteints d’un premier
cancer colorectal. Les performances de la procédure d’estimation sont évaluées par simula-
tions et son utilisation est illustrée par l’analyse de données provenant de registres familiaux du
cancer colorectal.

Mots-clés. Évènements successifs; Risques compétitifs; Données familiales; Biais de sélection;
Cancer colorectal; Syndrome de Lynch.

Abstract. We propose here an association model to estimate the penetrance (risk) of succes-
sive cancers in the presence of competing risks. The association between the successive events
is modeled via a copula and a proportional hazards model is specified for each competing event.
This work is motivated by the analysis of successive cancers for people with Lynch Syndrome
in the presence of competing risks. The proposed inference procedure is adapted to handle
missing genetic covariates and selection bias, induced by the data collection of families with
multiple individuals affected with a first colorectal cancer. The performance of the proposed
estimation procedure is evaluated by simulations and its use is illustrated with data from the
Colon Cancer Family Registry.

Keywords. Successive events; Competing risks; Familial data; Selection bias; Colorectal
cancer; Lynch syndrome.

1 Introduction
An important issue when estimating the risk associated with a single or multiple cancer events is
the presence of competing events. Competing risks concern the situation where more than one
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cause of failure is possible (Putter et al., 2007). A classical example relates to several causes
of death (e.g. from cancer) where the occurrence of any cause of death prevents the event of
interest from occurring. Treating the events of the competing causes as censored observations
will lead to biased estimates of the penetrance function of the event of interest when we are
in the presence of correlated competing risks (Putter et al., 2007). In this paper, we propose a
general methodology to estimate the risks of observing a first cancer event and a second cancer
event given the age at onset of the first cancer in people with Lynch Syndrome (LS) while
accounting for the presence of competing risk events.

2 Model
Consider the following progressive multistate model with competing risks. The model includes
5 states, healthy and events 1 to 4, where events 1 and 2 are successive events of interest and
events 3 and 4 represent competing events for events 1 and 2, respectively.

2.1 Marginal distributions
Let T1 and T3 be the times from the healthy state to events 1 and 3, respectively and Y1 =
min{T1, T3}. Define ε1 by ε1 = 1 if T1 < T3 and ε1 = 3, otherwise. Note that events 1 and 3
are competing risks so it is of interest to define the following cause-specific hazard functions

λk(y|G,X) = lim
dy→0

1

dy
P (y < Y1 ≤ y + dy, ε1 = k | G,X, Y1 > y), k = 1, 3,

where G is the individual genotype information corresponding to the mutation carrier status
(carrier=1, non-carrier=0) andX a set of measured covariates. By standard theory of competing
risks,

h1(y|G,X) = λ1(y|G,X) + λ3(y|G,X) and S1(y|G,X) = exp{−
∫ y

0
h1(u|G,X)du}

are the hazard and survival functions associated to Y1, respectively and

F11(y|G,X) = P (Y1 ≤ y, ε1 = 1|G,X) =
∫ y

0
S1(u|G,X)λ1(u|G,X)du

is the cause-specific cumulative incidence function of event 1.
The people satisfying ε1 = 1 are afterwards at risk of observing either event 2 or event 4. Let
T2 and T4 be times from event 1 to events 2 and 4, respectively and Y2 = min(T2, T4). Define
ε2 by ε2 = 2 if T2 < T4 and ε2 = 4, otherwise. Similarly, define the conditional cause-specific
hazard functions given ε1 = 1 by

λk(y|G,X) = lim
dy→0

1

dy
P (y < Y2 ≤ y + dy, ε2 = k | G,X, Y2 > y, ε1 = 1), k = 2, 4.
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The conditional hazard and survival functions associated to Y2 given ε1 = 1 are then, respec-
tively,

h2(y|G,X) = λ2(y|G,X) + λ4(y|G,X) and S2(y|G,X) = exp{−
∫ y

0
h2(u|G,X)du}.

We assume that the cause-specific hazard for the event k, k = 1, 2, 3, 4, follows a proportional
hazards regression model

λk(y|G,X) = λk0(y)eβ
>
k X+βgkG,

where λk0 is the baseline hazard function and βk and βgk the regression coefficients related
to event k. Two approaches are considered in this paper: (i) a parametric approach where a
parametric distribution is specified for each λk0 and (ii) a piecewise constant hazard approach
where λk0 is assumed to be constant within each interval of a partition of [0,∞). In both cases,
we denote by θk the set of baseline distribution parameters and regression coefficients related
to event k.

2.2 Association model
For the people satisfying ε1 = 1, we model the dependence in the pair (Y1, Y2) through a semi-
survival copula, Cγ , (Lakhal-Chaieb et al. 2006) defined as follows:

P (Y1 ≤ y1, Y2 > y2|ε1 = 1, G,X) = Cγ {P (Y1 ≤ y1|ε1 = 1, G,X), P (Y2 > y2|ε1 = 1, G,X)}
= Cγ {F11(y1|G,X)/p(G,X), S2(y2|G,X)} ,

where the parameter γ measures the conditional dependency in the pair (Y1, Y2) given ε1 = 1
and p(G,X) = P (ε1 = 1|G,X) = lim

t→∞
F11(t|G,X).

The model is completed by specifying P (ε2 = 2|G,X, Y1 = y1, Y2 = y2, ε1 = 1). This
probability has to satisfy

P (ε2 = 2|G,X, Y2 = y2, ε1 = 1) = EY1 {P (ε2 = 2|G,X, Y1, Y2 = y2, ε1 = 1)}

=
λ2(y2|G,X)

λ2(y2|G,X) + λ4(y2|G,X)
, (1)

where the expectation is taken with respect to Y1. A natural and mathematically convenient
strategy to ensure that (1) holds is to assume

P (ε2 = 2|G,X, Y1 = y1, Y2 = y2, ε1 = 1) = P (ε2 = 2|G,X, Y2 = y2, ε1 = 1). (2)

When this condition is not fulfilled, we are in the presence of an additional aspect of the depen-
dency between the successive competing risks. In Web Appendix A, we present a procedure to
test equation (2). Applying this test to the LS families cancer data suggests that it is plausible to
assume (2) in our case. Therefore, the developments presented throughout the rest of this paper
are made under this assumption.
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2.3 Penetrance functions
The penetrance functions are defined as cause-specific cumulative incidence functions. The
penetrance for event 1 is P1(y1;G,X) = F11(y1|G,X), which is the cumulative risk of de-
veloping event 1 by age y1 in the presence of the competing event 3. The penetrance function
for event 2 is the cause-specific cumulative incidence function conditional on the age at onset
of event 1. When the assumption (2) is satisfied, we show in Appendix A that this penetrance
function equals

P2(y2; y1, G,X) = P (Y2 ≤ y2, ε2 = 2|Y1 = y1, ε1 = 1, G,X)

=
∫ y2

0
C11γ {F11(y1|G,X)/p(G,X), S2(u|G,X)}S2(u|G,X)λ2(u|G,X)du, (3)

where Cijγ (u, v) = ∂i+jCγ(u, v)/∂iu∂jv. It is the probability of developing event 2 within y2
since event 1 which has occurred at y1. One is often interested in a 5-year or 10-year penetrance
for second event.

3 Observed data and inference procedures

3.1 Maximum likelihood estimation
In this section, we describe the observed data and derive an estimation procedure for the pa-
rameters {θ1, θ2, θ3, θ4, γ}. In the LS families cancer data, Y1 is right-censored by the age of
last follow-up a. The observed data related to the events 1 and 3 is then {a, Ỹ1, ε̃1}, where
Ỹ1 = min(Y1, a) and ε̃1 = ε1 × I(Y1 < a) ∈ {0, 1, 3}. For those satisfying ε̃1 = 1, we also
observe Ỹ2 = min(Y2, a− Y1) and ε̃2 = ε2 × I(Y2 < a− Y1) ∈ {0, 2, 4}.
The observations are clustered into I families. The data is then

∆ = {(aij, Ỹ1ij, ε̃1ij, Ỹ2ij, ε̃2ij, Gij, Xij), i = 1, · · · , I, j = 1, · · · , ni},

where ni is the size of the ith family.
A family is included into the study if and only if the first examined person or proband has
observed either event 1 or event 3 by age a. We assume a unique proband per family, which
we index by the subscript j = 1. Close relatives of this proband for whom some genotype
and cancer history information is available from the corresponding family unit. As this data
collection protocol induces a selection bias, an ascertainment correction is required. To this
end, we employ a conditional likelihood approach where the contribution of each family is
corrected for its probability of being ascertained. For parameter estimation, we consider a two-
stage estimation procedure. In the first stage, we estimate the parameters related to events 1 and
3 by maximizing the conditional log-likelihood function

I∑
i=1

ni∑
j=1

l1(θ1, θ3|Ỹ1ij, ε̃1ij, Gij, Xij)−
I∑
i=1

lc(θ1, θ3|ai1, Gi1, Xi1), (4)
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where

l1(θ1, θ3|Ỹ1, ε̃1, G,X) =
∑

k∈{1,3}
I(ε̃1 = k)× log{λk(Ỹ1|G,X)} −

∫ Ỹ1

0
h1(u|G,X)du

is the standard contribution of an individual to the log-likelihood function and

lc(θ1, θ3|a,G,X) = log{P (Y1 < a|G,X)} = log{1− S1(a|G,X)} (5)

is the familial ascertainment correction term. This log-likelihood function is derived under the
assumption of conditional independence of ages at onset of cancer of family members given
their mutation carrier statuses. This assumption is plausible in our case given the strong associ-
ation between the genotype and the risk of developing cancer.
At the second stage, we estimate the parameters related to events 2 and 4 as well as the copula
parameter γ by maximizing the log-likelihood function

I∑
i=1

ni∑
j=1

I(ε̃1ij = 1)l2(θ2, θ4, γ|θ̂1, θ̂3, Ỹ1ij, Ỹ2ij, ε̃2ij, Gij, Xij),

where

l2(θ2, θ4, γ|θ̂1, θ̂3, Ỹ1, Ỹ2, ε̃2, G,X) = I(ε̃2 = 0) log
[
C10γ {F̂11(Ỹ1|G,X)/p̂(G,X), S2(Ỹ2|G,X)}

]
+

∑
k∈{2,4}

I(ε̃2 = k) log
[
C11γ {F̂11(Ỹ1|G,X)/p̂(G,X), S2(Ỹ2|G,X)}S2(Ỹ2|G,X)λk(Ỹ2|G,X)

]
(6)

and θ̂1 and θ̂3 are obtained from the first stage.

4 Simulation Study
We conducted a simulation study to evaluate the performance of our proposed successive com-
peting risks model by examining the accuracy and precision of estimates of model parameters
and penetrance functions. We simulated samples of 781 families with structures and inclusion
criteria similar to those of the Lynch Syndrome families from the Colon Cancer Family Registry
(Colon CFR). For each family member, the times to the first and second events of interest were
generated in the presence of competing events based on the proposed model assuming Weibull
baseline hazard functions and a Clayton copula, with parameters estimated from the Colon
CFR’s data in order to mimic realistic disease risks. We considered 0% (no missing), 50% and
80% of missing genotypes among family members of the probands for studying the impact of
missing genotypes. For each genotype missing rate, we generated 1000 samples and for each
generated sample, we estimated the parameters of the model and deduced plug-in estimators for
the penetrance functions for the first and second cancers. We fitted the simulated data assuming
various forms for the baseline hazard functions: parametric Weibull, log-logistic, and gamma
distributions and piecewise constant hazards where λ01 and λ03 were assumed to be constant
within the intervals (0, 5], (5, 10], · · · , (60,∞) and λ02 and λ04 within (0, 5], · · · , (30,∞).
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Table 1: Accuracy and precision of estimates of log relative risks and penetrance for mutation
carriers by age 70 for the first cancer, P1(70;X), given gender X , male (M) and female (F)
based on 1000 simulations of sample size of 781 families. For each simulation, data were
generated assuming Weibull baselines, and different baseline distributions assumptions were
applied for fitting the data.

Baseline True No missing genotypes 50% Missing genotypes 80% Missing genotypes
distribution value Bias SE RMSE Bias SE RMSE Bias SE RMSE

Weibull β1sex 0.3706 0.0073 0.1399 0.1401 0.0187 0.1606 0.1617 0.0574 0.1947 0.2030
β1gene 3.5206 0.0182 0.2256 0.2264 -0.0028 0.2801 0.2802 -0.1273 0.4026 0.4223

Log-logistic β1sex 0.3706 0.0100 0.1488 0.1491 0.0123 0.1587 0.1591 0.0503 0.1998 0.2061
β1gene 3.5206 0.0109 0.2394 0.2396 -0.0037 0.2891 0.2891 -0.1253 0.4411 0.4585

Penetrance for the first cancer by age 70

Weibull P1(70;M) 0.6250 0.0001 0.0177 0.0177 0.0010 0.0175 0.0176 -0.0017 0.0179 0.0179
P1(70;F ) 0.4922 -0.0015 0.0460 0.0460 -0.0044 0.0533 0.0535 -0.0188 0.0628 0.0655

Log-logistic P1(70;M) 0.6250 0.0007 0.0239 0.0239 0.0000 0.0172 0.0172 -0.0020 0.0177 0.0178
P1(70;F ) 0.4922 -0.0019 0.0502 0.0502 -0.0037 0.0526 0.0527 -0.0171 0.0648 0.0670

SE is empirical standard error; RMSE is root mean square error.

5 Conclusion
Our simulation studies demonstrated the good performances of our approach in terms of bias
and precision of the estimates of interest. For the first event, the estimation of covariate effects
(gender, mutation status) and penetrance function was quite robust to the presence of missing
genotypes, misspecification of the baseline and familial ascertainment. For the second event,
although we noted larger biases of the covariate effects when the baseline hazard function was
misspecified, the estimation of the penetrance function was generally unbiased even in the pres-
ence of missing genotypes. This is an important result since our main interest is in this pene-
trance function for the second event. Application of the method to LS families will be further
discussed during the presentation.
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