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Résumé. Initialement introduite par John W. Tukey (1975), la profondeur statis-
tique des données est une fonction qui détermine la centralité d’un point de l’espace par
rapport à un nuage de points ou à une distribution de probabilité. Au cours des dernières
décennies, la profondeur des données a rapidement évolué vers un mécanisme puissant qui
s’avère utile dans divers domaines de la science. Dernièrement, l’extension de profondeur
des données dans le cadre fonctionnel a attiré beaucoup d’attention. Nous suggérons
une notion basée sur la profondeur de données de Tukey appropriée pour des données
représentées par des trajectoires ou des courbes non-paramétrées. Cette profondeur basée
sur la longueur des trajectoires ou des courbes hérite à la fois de la géométrie euclidienne
et des propriétés fonctionnelles, tout en surmontant certaines limitations des approches
précédentes. Les applications de cette profondeur de courbe comprennent l’imagerie
cérébrale et la reconnaissance de motifs écrits.

Mots-clés. Courbes non-paramétrées, profondeur des données, statistique non-paramé-
trique, imagerie cérébrale, apprentissage supervisé.

Abstract. Following the seminal idea of John W. Tukey (1975), statistical data depth
is a function that determines centrality of an arbitrary point w.r.t. a data cloud or a
probability measure. During the last decades, data depth rapidly developed to a powerful
machinery proving to be useful in various fields of science. Recently, implementing the
idea of depth in the functional setting attracted a lot of attention among theoreticians and
applicants. We suggest a Tukey-based notion of data depth suitable for data represented as
curves, or trajectories, which inherits both Euclidean-geometry and functional properties
but overcomes certain limitations of the previous approaches. It can be shown that the
Tukey curve depth satisfies the requirements posed on the general depth function, which
are meaningful for trajectories. Applications of the Tukey curve depth include brain
imaging and written patterns recognition.

Keywords. Curve data, data depth, nonparametric statistics, brain imaging, super-
vised learning.
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1 Introduction

Suggested as a descriptive statistics by Tukey (1975) the idea of data depth rapidly
developed to a powerful machinery finding applications in various areas. It consists in
defining a function D(x|X) that determines centrality of a point x ∈ Rd w.r.t. a data
cloud X in Rd (or a probability measure). Roughly speaking a depth function provides a
center-outward ordering of points x ∈ Rd w.r.t. the empirical distribution of sample X.
According to the literature (Dyckerhoff, 2004; Mosler, 2013; also Zuo and Serfling, 2000),
a statistical depth function has to satisfy desirable properties: affine invariance, vanishing
at infinity, monotonocity w.r.t. the deepest point, and upper semicontinuity. Numerous
depth functions have been developed, which fulfill the above postulates to different extent,
see for instance Zuo and Serfling (2000) and Mosler (2013) for a survey.

During the last decades and especially recently, a number of works related to depth
and its applications have been published, constantly opening new domains: multivariate
data analysis (Liu et al., 1999), statistical quality control (Liu and Singh, 1993), classifi-
cation (Jöornsten, 2004; Lange et al., 2014), tests for multivariate location and scale (Liu,
1992; Dyckerhoff, 2002), multivariate risk measurement (Cascos and Molchanov, 2007),
robust linear programming (Bazovkin and Mosler, 2015), etc. A natural direction of this
process is adjusting existing and developing new definitions applicable to further ways of
data registration, and eventually other types of data. For instance, the notion of data
depth has been extended to the functional setting. Posing different further restrictions
on the space of functions, a number of notions of depth for functional data have been
and are being developed. These can be roughly categorized into two groups: directly
employing the multivariate depth in the infinite dimensional space, see Chakraborty and
Chaudhuri (2014), Mosler and Polyakova (2012); and averaging a particular (univariate)
depth over the time interval according to the suggestion of Fraiman and Muniz (2001), see
Lòpez-Pintado and Romo (2009) for simplicial depth, Lòpez-Pintado and Romo (2011) for
univariate and Claeskens et al. (2014) for multivariate halfspace depth. Recently Nieto-
Reyes and Battey (2016) proposed an axiomatization of depth function for functional data
accounting for topological features.

In this paper, we present a notion of data depth for curve data. Examples of such
data can be any stochastic process representable as paths in a multivariate space, e.g.
trajectories of animals’ displacement, highly non-synchronized in time at the beginning
and at the end economic processes, or — the application in the center of our attention
— axons connecting brainstem with the cortex. First, we show that the functional data
depth is not accurate for curve data. Then we define a data depth for curve data.

2 Motivation

Consider a set of paths, or trajectories, eventually curves in Rd. For the first view,
functional data depth can be naturally adapted to provide a center outward ordering. One
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Figure 1: A set of curves with one curve in red (a), an “ideal” curve for the parametrization
example (b), depth-colored curves for parametrizations A (c) and B (d). The depth of each
curve is calculated w.r.t. to the same sample. The used depth notion is the multivariate
functional halfspace depth by Claeskens et al. (2014). The depth increases from yellow
to red, the deepest curve has blue color.

possibility would be to choose a direction mostly aligned with the majority of the curves
and use this as the argument axis while intersections of the curves with the orthogonal (d−
1)-dimensional affine subspaces would serve as functions’ evaluations; after the functional
data depth can be employed. First immediate problem connected with this approach
comes from the fact that the obtained dependency may not have functional character for
some such directions. Further, depth values may depend on the chosen direction.

More appropriate way to proceed is to parametrize curves in a certain manner. But
then depth of a curve will be dependent on its parametrization and parametrizations of
the other curves in the set. This parametrization may be not obvious, especially when
curves are observed as sets of points after a certain process is finished and no information
about its development is available. We demonstrate this last issue on an artificial example.

Regard a set of two-dimensional curves, see Figure 1 (a), which we demonstrate on
the “ideal” curve shown in Figure 1 (b). We consider two parametrizations of spatial
coordinates x1 and x2, (A) and (B) defined as follows,

x1(t) = −
(
cos(t) + 1

)
1{t < 3π

2
} −

(
cos(3t− 3π) + 1

)
1{t ≥ 3π

2
}+ 1,

x2(t) =
(
sin(t) + 1

)
1{t < 3π

2
} −

(
sin(3t− 3π) + 1

)
1{t ≥ 3π

2
};

(A)

x1(t) = −
(
cos(3t) + 1

)
1{t < π

2
} −

(
cos(t+ π) + 1

)
1{t ≥ π

2
}+ 1,

x2(t) =
(
sin(3t) + 1

)
1{t < π

2
} −

(
sin(t+ π) + 1

)
1{t ≥ π

2
}.

(B)

After having employed the multivariate functional hafspace depth by Claeskens et al.
(2014) to calculate depth of each curve w.r.t. the sample, the respective orderings and

3



−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x2

−2 −1 0 1 2
−

2
−

1
0

1
2

x1

x2

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x2

(a) (b) (c)

Figure 2: Depth-colored curves for parametrization A (a); depth-colored curves for
parametrization B (b). Both calculated using the multivariate functional halfspace depth
by Claeskens et al. (2014). The proposed depth notion (c) according to (1). The depth
of each curve is calculated w.r.t. to the same sample. The depth increases from yellow to
red, the deepest curve has blue color.

the deepest curves are pictured in Figure 2 (a) and (b) for parametrizations A and B,
respectively. One observes that the depth-induced order differs. In addition one can see
that some of rather outlying curves have relatively high depth (orange or even close to
red color in Figure 2 (a) and (b)) while those closer to center can have lower depth values
(yellow color in Figure 2 (a) and (b)).

3 A notion of data depth for unparametrized curves

Let (Rd, | · |2) be the Euclidean space. A path in Rd is a continuous map from [0, 1] to Rd.
Under a path neither a map nor its image is meant: two maps visiting the same collection
of points (the same curve) are equivalent. In the current section, we define a measure of
centrality for curves sticking to the seminal philosophy of John W. Tukey.

The space of unparametrized curves Γ is the quotient space of the space of continuous
functions defined on the interval [0, 1], C([0, 1], Rd), and an equivalence relation is defined
as follows: two continuous functions γ1 and γ2 describe the same curve if and only if
there exist two monotone continuous functions φi : [0, 1] → [0, 1], i = 1, 2, such that
f1 ◦ φ1 = f2 ◦ φ2. We denote [γ] the associated equivalence class of γ ∈ Γ. The space Γ
endowed with the following metric:

d([γ1], [γ2]) = inf{‖γ1 − γ2‖∞, γ1 ∈ [γ1], γ2 ∈ [γ2]} .

is a separable, metric, complete (polish) space.
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The length of a path γ : [0, 1]→ Rd w.r.t. the Euclidean distance is defined as

L(γ) := sup
{ n∑

i=1

|γ(ti)− γ(ti−1)|2 : (ti)i=0,...,n is a partition of [0, 1]
}
.

We consider only rectifiable curves, that means the length of curves are assumed to be
finite.

Let Y = {[γ1], ..., [γn]} be a sample of curves in Γ. For a curve [γ] ∈ Γ, we define a
depth of its arbitrary point x ∈ [γ] w.r.t. the sample Y as

D(x|[γ],Y)=inf

{
v

(
1

n

n∑
i=1

L([γi] ∩H)

L([γi])
,
L([γ] ∩H)

L([γ])

)
: H closed halfspace, x ∈ H

}
,

where for a, b ∈ R

v(a, b) =

{
0 if a = 0 and b = 0 ,
a
b

otherwise.

Now, we define the Tukey curve depth of [γ] w.r.t. Y in Γ as:

DΓ([γ]|Y) =

∫ 1

0

D(x|[γ],Y)
dγ

L([γ])
. (1)

4 Discussion

This work introduces a novel notion of data depth operating on the space of nonparame-
trized curves. Being invariant to the manner of traversing the curve the Tukey curve
depth delivers coherent results exploiting purely the geometry of the data. For the above
example, e.g., the depth-colored curves are plotted in Figure 2 (c). One can observe the
proper position of the deepest curve, and that more centrally lying curves are rather deep
(red), with smaller depth for those having somewhat outlying shape (orange) and low
depth for those seriously differing in shape and outlying in location (yellow). Further, the
developed depth notion adapts properties of the statistical depth function transferable to
the space of curves, such as Euclidean invariance or vanishing at infinity. This measure
of centrality is useful as descriptive statistics, when testing for homogeneity, or in clas-
sification and finds applications, e.g., in description of brain imaging or written pattern
recognition.
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