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Résumé. La découverte de variants génétiques rares à partir du séquençage de nou-
velle génération devient un probléme très complexe dans le domaine de la génétique hu-
maine. Nous proposons ici une nouvelle statistique pour tester une région chromosomique
donnée basée sur le facteur de Bayes (FB) afin de mettre en évidence l’association entre
un ensemble de variants rares situés sur cette région et une maladie. La vraisemblance
marginale est calculée sous l’hypothèse nulle et alternative en supposant une distribution
binomiale pour le nombre de variants rares dans la région. Une distribution Beta ou un
mélange de Dirac et une distribution Beta est spécifiée pour la distribution a priori. Les
hyper-paramètres sont déterminés de manière à ce que la distribution nulle du FB ne varie
pas en fonction de la taille des gènes. Un test de permutations ou la statistique False
Discovery Rate (FDR) sont utilisés pour l’inférence. Nos études de simulations ont montré
la supériorité du FB comparé à des méthodes standards dans la plupart des situations
envisagées. Notre application sur données réelles concernant le cancer du poumon a mis
en évidence l’enrichissement en variants rares de nouveaux gènes.

Mots-clés. Inférence Bayésienne, Facteur de Bayes, Association génétique, études de
sequençage, Cancer du poumon.

Abstract. The discovery of rare genetic variants through Next Generation Sequenc-
ing (NGS) is becoming a very challenging issue in the human genetic field. We propose
here a novel region-based statistical test based on a Bayes Factor (BF) approach to as-
sess evidence of association between a set of rare variants located on this region and a
disease outcome. Marginal likelihood is computed under the null and alternative hypothe-
ses assuming a binomial distribution for the rare variants count in the region. A Beta
distribution or a mixture of Dirac and Beta distribution is specified for the prior distri-
bution. The hyper-parameters are determined to ensure the null distribution of BF does
not vary across genes with different sizes. A permutation test or False Discovery Rate
(FDR) statistic are used for inference. Our simulations studies showed that the new BF
statistic outperforms standard methods under most situations considered. Our real data
application to a lung cancer study found enrichment for rare variants in novel genes.
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1 Introduction

The emergence of new high-throughput genotyping technologies, such as Next Generation
Sequencing (NGS), allows the study of the human genome at an unprecedented depth and
scale (Lee et al., 2014). The discovery of rare variants through NGS is becoming a very
challenging issue in human genetics. Because rare variants occur too infrequently in
the general population, single-variant association tests lack power. We propose here a
novel region-based statistic based on a Bayes Factor (BF) approach to assess evidence
of association between a set of rare variants located on same chromosomal region and a
disease outcome.

2 Model

2.1 The NGS Data

We focus on the bi-allelic variant sites (genetic locus with two possible alleles) with minor
allele frequency (MAF) less than 1%. For one genetic locus (site), the genotype of one
individual is usually coded as 0 or 1 or 2, representing the number of minor alleles an
individual carries. In our study, it is recoded as 0 or 1 as the genotype 2 is too rare to be
observed.

2.2 Model Setting

We propose a region-based statistic by modelling the count of rare variants in a specific
chromosomal region, e.g. a gene. Let Xijk be the count of rare variants in the region i,
for group j and individual k within group j, with i ∈ {1, ...,m}, j ∈ {1, 2} (1 for the
control group, 2 for the case group) and k ∈ {1, ..., Nj}. We assume that the occurrence
of a rare variant at any given site of the region follows an independent Bernouilli process.
The distribution of Xijk is therefore Binomial

Xijk ∼ Binomial(nijk, pijk)

where pijk is the true, unobserved rate of rare variant at a single locus of the region and
nijk is total number of sites in the region i for group j and individual k.

We suppose that pijk varies across genetic regions and individuals, according to a prior
density function g(pijk|θij), with θij ≡ θi1 if j is in the control group and θij ≡ θi2 if j is
in the case group. Our goal is to assess whether there is a difference in rare variant counts
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between cases and controls in a particular region i by comparing : Hi0 : θi1 = θi2 = θi
vs. Hi1 : θi1 6= θi2 using the Bayes Factor (BF) statistic.

2.3 BF derivation under case-control design

By definition, the BF is the ratio of the marginal likelihoods of the observed data under
H1(m1(X)) and H0(m0(X)). We derive the BF assuming a case-control sampling design.
We omit the index i for sake of presentation.

Let X ≡ XN = (X1, ..., XN) be the vector of rare variant counts and P ≡ PN =
(p1, ..., pN) the vector of rare variant rates over N(= N1 +N2) individuals. Under H0, the
marginal likelihood is

m0(X) =

∫
f(X,P )dP

=

∫
f(X|P )g(P )dP

=

∫
f(X|P )

∫
g(P |θ)π(θ)dθdP

where f denotes binomial distribution probability mass function, g the prior density
function for P , and π the density function for the parameter θ that we are interested to
compare between cases and controls.

Under H1, the marginal likelihood is written as a product of two marginal likelihood
functions over cases and controls

m1(X) =

∫
f(X1,P1)dP1

∫
f(X2,P2)dP2

=

∫
f(X1|P1)g(P1)dP1

∫
f(X2|P2)g(P2)dP2

=

∫
f(X1|P1)

∫
g(P1|θ1)π(θ1)dθ1dP1

∫
f(X2|P2)

∫
g(P2|θ2)π(θ2)dθ2dP2

where X1 and P1 are the vector of rare variant counts and rates in controls and X2, P2

in cases. The marginal likelihoods are calculated using the Laplace approximation.

2.4 Prior definition

Since the proportions of rare variants among individuals can be anywhere between 0
and 1, we assume that the proportions for each genomic region within each group of
individuals follow a beta distribution or a mixture of Dirac and beta distribution. The
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beta distribution has long been a natural choice to model binomial proportions as it
is a conjugate prior distribution of the binomial distribution and is the most flexible
distribution with a support interval of [0, 1].
For the beta prior, we assume

pijk|θij ∼ Beta(ηij, Kij),

Here the beta distribution is parametrized in terms of mean (denoted by ηij) and preci-
sion (denoted by Kij). Compared with the traditional parameterization of the Beta(α, β)
distribution, the parameters have the following relationship:

η =
α

(α + β)
, K = α + β.

In this hierarchical model, the biological variation among replicates is captured by the
beta distribution and the variation due to the random sampling of DNA segments during
sequencing is captured by the binomial distribution.

For the mixture prior, we assume that pijk follows a mixture distribution of a point
mass at zero and a beta distribution with parameters ηij and Kij, with probability w0ij

and w1ij = 1− w0ij, respectively. The distribution of Xijk becomes

Xijk =

{
0, if pijk = 0 with P (pijk = 0) = w0ij

Xijk ∼ Bin(nijk, pijk), if pijk > 0 with P (pijk > 0) = 1− w0ij

Also when pijk > 0, the prior density for pijk is Beta(ηij, Ki).
For both the Beta prior or mixture prior, we assume (ηij, Kij) ≡ (ηi1, Ki) if j is in

the control group or (ηij, Kij) ≡ (ηi2, Ki) if j is in the case group. In addition, for the
mixture prior, we also have w0ij ≡ w0i1 or w0ij ≡ w0i2 if j is in the control or case group,
respectively.

The precision parameter Ki captures the variation of the proportion of rare variants
relative to the group mean. For the simple beta prior, Ki was fixed and similar across
regions Ki ≡ K, while for the mixed prior we allow Ki to vary across genomic regions.
The precision parameter K can be estimated by the method of moment or the MLE. In
our application, we chose K that maximizes the marginal likelihood and assessed in the
simulation the sensitivity of BF to the choice of K (see simulation study).

2.5 Hyper-parameter Specification

We assume a hyper-prior Beta distribution for each hyper-parameter defined above: η,
η1, η2, w01, w02, and w0. These new Beta distributions are also function of a mean and
precision parameter that are estimated empirically from the data. They are determined
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such that the null distribution of the BF over the multiple regions tested, does not depend
on the number of sites of each region under both the Beta prior and mixture prior. This
ensures the validity of permutation testing procedures.

2.6 False Discovery Rate (FDR)

We propose here a Bayesian FDR control approach for our BF statistic to assess the
genome wide significance of the multiple genomic regions tested.

3 Simulation Study

The genetic variants data in a specific chromosomal region were simulated with the soft-
ware simuPOP (Peng and Kimmal, 2005). The size of the region was 100k base pairs
including 6372 sites (i.e. where a variant can be observed). We removed variants with
MAF greater than 1% or less than 0.05% leaving 147 sites for our analysis. The disease
status was generated using Logistic regression, with 15 randomly selected causal variants.
The effect size of each causal variant is inversely proportional to its MAF (Wu, et al.
2011). In our current simulation study, we assume all causal variants are deleterious (i.e
increase the disease risk). We used 500 cases and 500 controls.

Table 1: Power study of different versions of BF and SKAT/Burden statistics with 5000
replicates.

Statistical Test Power& (%)
Bayes Factor K
Beta prior Compare η 100 50.9

200 60.1
300 63.4
400 65.0
500 66.2

Mixed prior Compare w0 - 44.1
Compare η - 76.1
Compare w0 and η - 74.8

SKAT 25.5
Burden 40.6
&Power calculation is done at the 5% level for all methods

The simulation results show that the BF approach outperforms standard methods
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such as SKAT (Wu et al., 2011) and the Burden test (Li & Leal, 2008). These results
still hold when considering different region sizes and sample sizes.

4 Real data application

In the application analysis, we used a whole-exome-sequencing study from Toronto that
included 258 lung cancer patients and 257 healthy matched controls. We applied two
versions of BF to this data, the Beta prior and the mixture prior where we compared η
under both approaches. We were able to replicate some known candidate genes, such as
TERT, BRCA2 and CHRNA5, and discovered new ones. It’s noteworthy that many of
these genes could not be found with standard methods such as SKAT and Burden test.

5 Conclusion

Our new BF statistic is a sensitive approach to detect rare variants associated with com-
plex diseases using the newly developed NGS technology. Both simulations and real data
application showed the good performances of this approach. The use of empirical Bayes
priors along with a Bayesian control of FDR offer a comprehensive framework to make
genome-wide statistical inference about the important chromosomal regions associated
with the disease of interest. Finally, our BF approach is implemented in the R package
rareBF .
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