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Résumé. On propose une méthode bayésienne de classification de données circu-
laires multivariées non ordonnées. Les observations consistent en des ensembles (non
ordonnés) de k angles. Elles sont modélisées par des distributions normales projetées
sur le cercle unité couplées à un processus de Dirichlet. Des paramètres supplémentaires
sont introduits pour prendre en compte le caractère non ordonné des observations et pour
modéliser leur variance. L’inférence est réalisée par un algorithme de type Metropolis-
Hastings within Gibbs. La méthode est d’abord testée sur des simulations puis appliquée
à des données de radiothérapie.

Mots-clés. Méthodes bayésiennes, données circulaires, processus de Dirichlet, données
multivariées non ordonnées, distribution normale projetée, radiothérapie, classification.

Abstract. This paper presents a new Bayesian framework for the clustering of mul-
tivariate directional or circular data. We introduce a hierarchical model that combines
Projected Normal distributions and a Dirichlet Process. The data are made up of (non
ordered) sets of k angles. Additional parameters are introduced in order to take into
account the non ordered particularity of the data and for modelling their variance. The
parameters of the model are then inferred using a Metropolis-Hastings within Gibbs al-
gorithm. Simulated datasets are analyzed to study the influence of the parameters of
the model. The benefits of our approach are illustrated by clustering real data from the
positions of five separate radiotherapy x-ray beams on a circle.

Keywords. Bayesian Statistics, Circular data, Dirichlet process, Non-ordered multi-
variate data, Projected Normal Distribution, Radiotherapy machine data, Unsupervised
clustering.

1 Introduction

The latest generation of radiotherapy machines projects multiple rays. The selection of
the incident angles of the treatment beams may be a crucial component of IMRT planning.
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Figure 1: Real data set of 14 patients with k = 5 angles. A point on the circle represents
the location of a treatment beam.

Establishing a small set of standardized beam bouquets for planning could be of valuable
help. The set of beam bouquets could be determined by learning the beam configuration
features from previous IMRT datasets. The multiple beams are fixed on a circle in the
transverse plane around the patient. Therefore, an observation is composed of the k beams
of a patient, that is k circular measurements. The multivariate trait is due to the number
of points k on the unit circle of R2. One actual observation consists of a (non-ordered) set
of k angles rather than of a (ordered) vector of length k. In Figure 1, a real data set from
post-operative treatment of liver cancer at the Institute of Sainte Catherine in Avignon,
France, is represented. To understand the specificity of the data, consider a simple case
of two patients with angles {1◦, 60◦, 100◦, 150◦, 180◦} and {60◦, 100◦, 150◦, 180◦, 359◦}. To
cope with technical difficulties, it is convenient to store the angles of each patient in a
vector in increasing order (or in any other specific order). Note that the two patients
should share the same cluster as the sets of angles are very similar (modulo 360) but that
the derived vectors are not similar and are not likely to share the same cluster.

Abraham et al. (2013) defined a suitable distance on the circle and, given the number
of clusters, proposed an algorithm based on simulated annealing to cluster the n patients.
The number of clusters has to be supplied by the user and the final result reduces to a
unique clustering whereas there are probably other clusterings that could be acceptable.
To overcome these two drawbacks, we proposed a Bayesian method based on the Dirichlet
Process mixture (DPM) for multivariate circular data.
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2 Model

For simplicity, first assume that the ith of the n observations is given by a vector of k
ordered angles θi = (θi1, . . . , θik)

′ ∈ [0, 2π[k instead of a set {θi1, . . . , θik}; the latter case
will be addressed later. Using a projected normal distribution (Presnell et al., 1998),
we denote by xi = (xi1, . . . , xik)

′ ∈ (R2)k a random vector with distribution N2k(µ
τi
i , I2k)

where τi will be defined later and define θij as the radial projection of xij on the unit
circle of R2. In other words, we have xij = (xij1, xij2)

′ = (rij cos θij, rij sin θij)
′ for all

i ∈ {1, . . . , n} and all j ∈ {1, . . . , k} where rij denotes the Euclidean norm of xij. Note
that θi is observed while ri = (ri1, . . . , rik)

′ is not and is treated as an unknown parameter.
We will denote by PN2k(µ

τi
i , I2k) the joint distribution of (θi, ri). Clustering analysis will

be based on a Dirichlet process mixture (DPM) model described as follows :

θi, ri|µi, τi ∼ PN2k(µ
τi
i , I2k),

µi|P ∼ P,
P ∼ DP (n0P0),

(1)

where DP (n0P0) denotes the Dirichlet process (DP) introduced by Ferguson (1973) with
center P0 = N2k(0,Σ0) and precision parameter n0. The clustering properties of the DP
are well known and date back to Blackwell and MacQueen (1973): some µi can have the
same value; hence the clusters. Learning about n0 from the data may be addressed by
assuming a Gamma prior distribution n0 ∼ G(an0 , bn0) (Escobar and West, 1995).

Now, recall that the actual ith observation consists of a (non ordered) set of the
form {θi1, . . . , θik} rather than of a (ordered) vector θi = (θi1, . . . , θik)

′. We treat the
observations as vectors for convenience and introduce the permutation parameter τi to
compensate this simplification. More precisely, for all µi = (µi1, . . . , µik) and all permu-
tation τi, we set µτii = (µiτi(1), . . . , µiτi(k))

′; µτii can be viewed as a random permutation of
the coordinates of µi. The impact of the parameter τi can be understood by removing τi
in (1). In this case, two observations with the same angles but in different orders would
have a very low posterior probability of sharing the same cluster. We show that this
probability is actually high with (1) thanks to the symmetry introduced by τi.

It is natural to assume that the k angles θi1, . . . , θik are a priori roughly equally spaced
on the unit circle. This will be the case when µi1, . . . , µik will be approximately equally
spaced on a circle with center 0 and radius

√
ρ. We incorporate this prior information

into the covariance matrix Σ0(ρ) which is given in a closed form as well as its inverse and
its determinant. We also note that the variance of the angles θik is actually controlled by
ρ: the larger the value of ρ, the lower the variance of the angles. Inference on ρ can be
handled using an inverse gamma prior ρ ∼ IG(aρ, bρ).

3



To summarize, the complete Bayesian model can be expressed as follows:

θi, ri|µ, τ ∼ PN2k(µ
τi
i , I2k),

µi|P ∼ P,
P |n0, ρ ∼ DP (n0P0(ρ)),

τi ∼ UP ,
ρ ∼ IG(aρ, bρ),
n0 ∼ G(an0 , bn0).

(2)

where P0(ρ) = N2k(0,Σ0(ρ)), µ = (µ′1, . . . , µ
′
n)′, P is the set of permutations of {1, . . . , k}

and UP denotes the uniform distribution on P .

3 Inference and Application

We integrate over P as usual and we set θ = (θ′1, . . . , θ
′
n)′, r = (r′1, . . . , r

′
n)′, τ = (τ1, . . . , τn)′

and ξ = (r′, µ′, τ ′, ρ, n0)
′. Therefore the parameter reduces to ξ and the observation is θ.

We sample from the posterior distribution of ξ with a Metropolis-Hastings-Within-Gibbs
algorithm. We provide the complete conditional distribution for all the parameters except
for r and µ. A Metropolis-Hastings step is needed for r and we use the SAMS sampler of
Dahl (2003) for µ. This sampler may improve the merge-split sampler initially proposed
by Jain and Neal (2004).

Before using our algorithm on real data, we test it on two simulation studies. The per-
formances of our method are investigated using the Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985) to compare our obtained partition to the actual partition. We then
apply the methodology to a real data set from post-operative treatment of liver cancer
at the Institute of Sainte Catherine in Avignon, France. The majority clustering (mode
of the posterior distribution of the clusterings) is the same as in Abraham et al. (2013)
with a posterior probability equal to 30.5%. It can be noted that a credible region with
a posterior probability of 71% is made up of only 4 clusterings.

The interested reader is referred to Abraham et al. (2017) for more details on the
whole approach and the different results.
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