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Résumé. Les courbes principales sont la généralisation non-linéaire de l’analyse en
composantes principales. En général, une courbe principale passe continûment à travers le
«milieu» des données avec une hypothèse probabiliste et en donne un résumé de manière
non linéaire. Nous nous intéressons dans ce travail à la construction et à la mise en
oeuvre d’une implémentation d’un programme qui utilise les courbes principales en ligne.
Nous proposons un nouvel algorithme pour la construction de courbes principales qui
résument séquentiellement des données en ligne, reposant sur l’approche quasi-bayésienne.
En particulier, les sommets nécessaires pour former la courbe principale sont estimés
dynamiquement (c’est-à-dire qu’ils peuvent changer au cours du temps). Nous démontrons
de borne de regret de notre algorithme et nous donnons une implémentation via MCMC.

Mots-clés. Borne de regret, Courbes principales en ligne, MCMC, Estimateur quasi-
bayésien.

Abstract. The principal curves are nonlinear generalisation of principal component
analysis. By passing through the "middle" of a data set, a principal curve provides a sum-
mary of data set where they are often assumed to be observations from some probabilistic
model. In this work, we will consider the principal curves in an online setting and we
introduce a new algorithm to form principal curves for online data. Our procedure relies
on quasi-Bayesian approach, allowing for a dynamic (i.e., time-dependent) estimation of
vertices that are necessary for the construction of principal curves. Its theoretical merits
are supported by a regret bound and an MCMC-flavored implementation.

Keywords. Online principal curves, Quasi-Bayesian estimator, MCMC, Regret bound.

1 Introduction
Given a data set consisting of T observations of two variables x and y, we are interested
in plotting them by a scatter plot and in trying to summarize the pattern exhibited
by the observations. To do this, one often uses Principal Component Analysis (PCA)
to orthogonally transform the observations into a set of values of linearly uncorrelated
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Figure 1: An example of principal curve

variables called principal components. The number of principal components is less than
or equal to the number of original variables. This transformation is defined in such a
way that the first principal component has the largest possible variance of data set and
each succeeding component in turn has the highest variance possible under the constraint
that it is orthogonal to the preceding components. However, in some circumstances, it
is preferred to represent and summarize the data by a nonlinear pattern rather than by
straight lines. One may resort to nonlinear regression where we treat one of the variables
as an explanatory variable (eg, x) and another one as response variable (eg, y). We seek
therefore to find a model to predict the response using the value of explanatory variable.
More precisely, the expectation of y is modeled as a function f of x where f belongs to
a family of functions with certain regularity. But sometimes choosing a suitable variable
as response and others as explanatory for data in high dimension can be annoying. In
addition, even in low dimension, we sometimes wish to treat them symmetrically rather
than labelling one as a response variable.

The non-linearity of PCA and non-symmetry of regression leads to the notion of
principal curves which pass through the middle of observations in a smooth way, as
illustrated in Figure 1. The principal curves have been applied in many applications
including physics, character recognition etc. The original definition of principal curve
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dates back to Hastie and Stuetzle [6], where a smooth curve f(s) = (f1(s), . . . , fd(s)) is a
principal curve if:

1. f does not intersect itself.

2. f has finite length inside any bounded subset of Rd.

3. f is self-consistent, i.e.,

f(s) = E[X|sf (X) = s], (1)

where X ∈ Rd is a random vector with a certain distribution, and sf (x) is the largest s
such that f(s) is closest to x by Euclidean distance | · |2. More precisely,

sf (x) = sup
{
s : |x− f(s)|2 = inf

τ
|x− f(τ)|2

}
.

This self-consistency means that each point s of f is the average (under the distribution
of X) of all points projected on s. However, an unfortunate property of principal curves
defined by Hastie and Stuetzle [6] is that in general, it is not known if they exist for a
given source of distribution, let along online data for which no probabilistic assumption is
assumed. In our work, we will adopt the definition of principal curve by Kégl, Krzyżak,
Linder and Zeger [7] where a constraint of the length of curve is imposed. The advantage
of this definition is the existence of principal curve (in the new sense) for large class of
source distribution and it avoids the computing of condition expectation in (1) which is
infeasible in online setting.

Learning in online setting has been extensively studied last decades in game theory and
statistics, see [1]. Research efforts in online learning began in the framework of prediction
with experts advices, then was extended to regression and clustering framework [2]. The
ambition of our work is to propose a principal curve algorithm suited to online setting.
For this task, our strategy consists in two steps:

1. The Gibbs quasi-posterior which depends on the choice of a sparsity-inducing prior.
This approach is motivated by the quasi-Bayesian theory which has been extensively
studied by numerous researchers in batch setting and developed by Audibert [3],
Loustau [4] and Gerchinovitz [5] in online setting, among others.

2. The MCMC algorithm which allows effective simulations from the Gibbs quasi-
posterior of the complex-structured space.
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2 Notation
A parameterized curve in Rd is a continuous function f : I −→ Rd where I = [a, b] is a
closed interval of the real line. The length of f is defined by

L(f) = sup
M∑
i=1

|f(si)− f(si−1)|2,

where the supremum is taken over all subdivisions a = s0 < s1 < · · · < sM = b,M > 1.
Let x1, x2, . . . , xT ∈ Bd(R) ⊂ Rd be an online sequence, where Bd(R) is an `2-ball

centered in 0 ∈ Rd with radius R > 0. Let C be a grid over Bd(R), that is C = Bd(R)∩Γ,
where Γ is the lattice of distance ∆ of Rd. Denote by V = {v1, v2, . . . , vp} all the vertices
in C. Let L > 0 and define for each k ∈ {1, . . . , p− 1} a collection:

Fk,L = {f : polygonal line with k segments whose vertices are in V and L(f) ≤ L} .

Denote by F = ∪p−1k=1Fk,L all polygonal lines whose vertices are in V and length at most
L. It is clear that the smaller the distance ∆, the bigger the number of vertices p in C.
However, to ensure that the lengths of all polygonal lines do not exceed L, it suffices that
∆ ≥ (2R)(d+2)/d/L1/d, hence we have p ≤ L/(4R2dd/2).

Our goal is to learn a time-dependent polygonal line which passes through the middle
and gives a summary of all available observations (xs)1:(t−1) right before time t. To
this aim, the output of our algorithm at time t is a polygonal line f̂t ∈ F, depending
on past information (xs)1:(t−1) and past predictions (f̂s)1:(t−1). When xt is revealed, the
instantaneous loss of f̂t and xt is computed as

`
(
f̂t, xt

)
= inf

s∈I
|f̂t(s)− xt|22.

In the sequel, denote by π a prior on F and let λ > 0 be some (inverse temperature)
parameter. The output f̂t+1 is constructed as follows: at each time t, we observe xt and
a polygonal line f̂t+1 ∈ F is sampled from the Gibbs quasi-posterior ρ̂t+1 in Algorithm 1
below.

Note that the last term in step 5 is a consequence of the non-convexity of the loss `
(see [3]) and that the curve f̂t+1 is a realization of ρ̂t+1.

3 Regret bound of the algorithm
We present here our main theoretical result.
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Algorithm 1 A quasi-Bayesian algorithm for online principal curves
1: Input parameters: p > 0, π, λ > 0 and S0 ≡ 0
2: Initialization: Draw f̂1 ∼ π
3: For t = 1, . . . , T − 1
4: Get the data xt
5: Draw f̂t+1 ∼ ρ̂t+1(f) where dρ̂t+1(f) ∝ exp

(
− λSt(f)

)
dπ(f), and

St(f) = St−1(f) + ` (f , xt) +
λ

2

(
` (f , xt)− `

(
f̂t, xt

))2
.

6: End for

Theorem 1. For any sequence (xt)1:T ∈ RdT , and L > 0, there exists a prior π and a
λ > 0 such that the procedure described in Algorithm 1 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)`(f̂t, xt) ≤ inf
k∈{1,...,p−1}

{
inf

f∈F(k,L)

T∑
t=1

`(f , xt) + CR,d,L
√
kT

}
+ Cd

√
LT .

where R ≥ maxt=1,...,T |xt|2 and CR,d,L is a constant depending on R, d, L while Cd is a
constant only depending on d.

This theorem indicates that the expected cumulative loss of polygonal lines f̂1, . . . , f̂T
is close to the minimal cumulative loss over all k ∈ {1, . . . , p − 1}, up to a term that is
sublinear in T . In addition, we see that this term is proportional to

√
kT and penalizes the

number k of segments which is a measurement of the complexity of polygonal lines when
L is fixed. This result is consistent in order of k and number T of observations with that
of Biau and Fischer [8] where parameter selection for principal curves via penalization is
considered in a statistical setting. The implementation required to sample at each t from
the Gibbs quasi-posterior ρ̂t+1. Since ρ̂t is defined on the massive and complex-structured
space F (let us recall that F is a union of heterogeneous spaces), direct sampling from ρ̂t
is not an option and is much rather an algorithmic challenge. Our approach consists in
approximating ρ̂t by MCMC.
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