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Résumé. Dans ce papier, un algorithme efficace de projection sous contraintes de nor-
malisation et de parcimonie est proposé. Cet algorithme a été confronté à des méthodes à
l’état de l’art (recherche dichotomique et POCS) et a permis des améliorations significa-
tives en terme de temps de calcul. Son déploiement dans l’algorithme associé à l’Analyse
Canonique Généralisée Sparse (SGCCA) a motivé ce travail.
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Abstract. An efficient projection enforcing both normalization and sparsity is pro-
posed in this paper. The algorithm has been compared to state of the art methods (binary
search and POCS) and provides valuable runtime improvements. Its application within
the algorithm associated to Sparse Generalized Canonical Correlation Analysis (SGCCA)
has motivated this work.
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1 Introduction

We consider the non-convex set X =
{
x ∈ Rp | ‖x‖2 = 1 and ‖x‖1 ≤ τ with τ ∈ R∗+

}
and

a ∈ Rp
. The optimization problem that is considered is :

argmin
x∈X

‖x− a‖22 = argmin
x∈X

‖x‖22 + ‖a‖22 − 2a>x

= argmax
x∈X

a>x
(1)

According to (Witten, 2009), the solution of the optimization problem (1) satisfies u =
S(a, λ)/‖S(a, λ)‖2; where S is a softh-thresholding operator defined by S(a, λ) = max(0, |a| − λ)
applied componentwise. The parameter λ = 0 if ‖u‖1 ≤ τ and λ is chosen such that
‖u‖1 = τ otherwise. λ is usually determined by binary search or by Projection On
Convex Set algorithm (POCS), also known as alternating projection method (Boyd &
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Dattorro, 2003). In this paper, we proposed a new algorithm similar to the one for pro-
jecting a point onto the `1-ball which was described in (van den Berg et al., 2008). This
approach is summarized in the next section.

2 Efficient projection onto the `1-ball

Let ã be the absolute value of a with its elements sorted in decreasing order. Further, we
define the function ϕ(λ) = ‖S(a, λ)‖1 which is continuous, piecewise linear and decreasing
from ϕ(0) = ‖ã‖1 to ϕ(ã1) = 0. Therefore, if ‖a‖1 ≥ τ , as ϕ is continuous, it exists λ
such that ϕ(λ) = τ . Hence, this projection algorithm onto the `1-ball reduces to 4 steps :

1. Take the absolute value of a and sort its elements in decreasing order to get ã.

2. Find i such that ϕ(ãi) ≤ τ < ϕ(ãi+1).

3. Find δ such that ϕ(ãi − δ) = τ . As ϕ(ãi − δ) =
∑i

j=1 ãj − i(ãi − δ) = ϕ(ãi) + iδ

then δ = τ−ϕ(ãi)
i

.

4. Compute S(a, λ) = sign(a) max(|a| − λ, 0) with λ = ãi − δ.

Similar algorithm was proposed by (Candès, 2005), (Daubechies, 2007) and (Duchi, 2008).

3 Main contribution

The novelty of this paper is to extend the algorithm described previously to the function
ψ(λ) = ‖S(ã, λ)‖1/‖S(ã, λ)‖2 in order to solve optimization problem (1).

Proposition 1. For λ ∈ [0; ã1[, ψ(λ) =
‖S(ã, λ)‖1
‖S(ã, λ)‖2

verifies the 3 following properties:

(i) ψ is continuous and decreasing.

(ii) Let nmax be the number of element equal to ã1, the maximum of ã.
For τ ∈ [

√
nmax;

√
p] it exists i ∈ J1; pK and δ ∈ [0; ãi− ãi+1[ such that ψ(ãi−δ) = τ .

(iii) δ is solution of a second degree polynomial equation.

Proof. (i). The numerator and denominator of ψ are continuous as composition of con-
tinuous functions. Moreover, for λ ∈ [0; ã1[, ‖S(ã, λ)‖2 6= 0. Therefore, ψ is continuous
as quotient of 2 non-null continuous functions.
Assuming ãp+1 = 0, for λ ∈ [0; ã1[ it exists k ∈ J1; pK such that ãk+1 ≤ λ < ãk. For this
specific λ, we have:

‖S(ã, λ)‖1 =

[
k∑
j=1

ãj

]
− kλ (2)
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‖S(ã, λ)‖22 =
k∑
j=1

(ãj − λ)2 =

[
k∑
j=1

ã2j

]
− 2λ

[
k∑
j=1

ãj

]
+ kλ2 (3)

From equations (2) and (3), the derivate of ψ is :

ψ′(λ) =
1

‖S(ã, λ)‖22

(
‖S(ã, λ)‖21
‖S(ã, λ)‖2

− k‖S(ã, λ)‖2
)

=
1

‖S(ã, λ)‖2
(ψ(λ)2 − k) (4)

Moreover, the number of non-null elements of S(ã, λ) is equal to k. Therefore, from
Cauchy-Schwarz, the inequality ‖S(ã, λ)‖1 ≤

√
k‖S(ã, λ)‖2 holds, implying ψ′(λ) ≤ 0.

(ii). For ν ∈ [ã2; ã1[, ψ(ν) = nmax(ã1−ν)√
nmax(ã1−ν) =

√
nmax. Thus, ψ is decreasing from

ψ(0) = ‖a‖1/‖a‖2 ≤
√
p (Cauchy-Schwarz) to ψ(ν) =

√
nmax. It implies that for

τ ∈ [
√
nmax;

√
p], it exists i ∈ J1; pK such that ψ(ãi) ≤ τ < ψ(ãi+1). Finally, as ψ is

continuous, it exists δ ∈ [0; ãi − ãi+1[ such that ψ(ãi − δ) = τ .

(iii). Using the notations l1 = ‖S(ã, ãi)‖1 and l2 = ‖S(ã, ãi)‖2:

‖S(ã, ãi − δ)‖1 =
i∑

j=1

[ãj − (ãi − δ)] =
i∑

j=1

[ãj − ãi] + iδ = ‖S(ã, ãi)‖1 + iδ = l1 + iδ (5)

‖S(ã, ãi−δ)‖22 =
i∑

j=1

[ãj−(ãi−δ)]2 =
i∑

j=1

[(ãj− ãi)2+2δ(ãj− ãi)+δ2] = l22 +2δl1+iδ2 (6)

Moreover, as ψ(ãi− δ) = τ = ‖S(ã, ãi− δ)‖1/‖S(ã, ãi− δ)‖2, the following equality holds:

‖S(ã, ãi − δ)‖21 = τ 2‖S(ã, ãi − δ)‖22 (7)

Incorporating (5) and (6) in (7) gives:

δ2[i2 − iτ 2] + 2δl1[i− τ 2] + l21 − τ 2l22 = 0 (8)

The goal is now to find the positive root of this second degree polynomial equation. The
discriminant ∆ is equal to 4τ 2[τ 2 − i][l21 − il22]. It remains to show that ∆ is positive.
First, the number of non-null elements of S(ã, ãi+1) is equal to i and the Cauchy-Schwartz

inequality yields ‖S(ã, ãi+1)‖1 ≤
√
i‖S(ã, ãi+1)‖2. Second, ψ(ãi+1) =

‖S(ã, ãi+1)‖1
‖S(ã, ãi+1)‖2

> τ so

‖S(ã, ãi+1)‖1 > τ‖S(ã, ãi+1)‖2. Combining the two previous inequalities yields (i− τ 2)‖S(ã, ãi+1)‖1 > 0
which implies that i − τ 2 > 0. Third, from ψ(ãi) = l1/l2 ≤ τ <

√
i, we deduce that

l21 − il22 ≤ 0 which ensures that ∆ is positive.

To conclude, the sign of
l21 − τ 2l22
i2 − iτ 2

corresponds to the sign of the product of the 2 roots. As
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this term is negative, the 2 roots have opposite signs. The single solution of ψ(ãi− δ) = τ
is:

δ =
−2l1(i− τ 2) +

√
∆

2i(i− τ 2)
=
−2l1(i− τ 2) + 2τ

√
[τ 2 − i][l21 − il22]

2i(i− τ 2)
= − l1

i
+
τ

i

√
il22 − l21
i− τ 2

.

Using the fact that ψ(ãi) = l1/l2, the previous equation can be simplified as

δ =
‖S(ã, ãi)‖2

i

(
τ

√
i− ψ(ãi)2

i− τ 2
− ψ(ãi)

)
. (9)

Remark. τ <
√
i implies that if you know the number of non-null elements you want to

keep, then τ is in [
√
nmax;

√
i].

The proposed algorithm reduces to 4 steps:

1. Take the absolute value of a and sort its elements in decreasing order to get ã.

2. Find i such that ψ(ãi) ≤ τ < ψ(ãi+1).

3. δ =
‖S(ã, ãi)‖2

i

(
τ

√
i− ψ(ãi)2

i− τ 2
− ψ(ãi)

)
.

4. Compute S(a, λ) = sign(a) max(|a| − λ, 0) with λ = ãi − δ.

Remark. Sorting the elements in step 1 implies that the time complexity is at least
in O(p ln p) with p the dimension of a. In (Thom & Palm, 2013) a similar algorithm is
proposed where they avoid the sorting step which reduces the time complexity to O(p).

This algorithm is freely available within the RGCCA package (Tenenhaus & Guillemot,
2017).

4 Applications

Runtime. The runtime performances of the proposed algorithm (Proj l1 l2) are com-
pared to the binary search (Binary) algorithm, POCS algorithm and the projection onto
the `1-ball (Proj l1) algorithm. Figure 1(a) shows that Proj l1 l2 is almost 10 times faster
than Binary and POCS and performs similarly to Proj l1. Moreover, Figure 1(b) reports
the runtime of the four methods as a function of the dimension p.
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Figure 1: (a): Violin plots of the runtime of POCS, Binary, Proj l1 l2 and Proj l1 through-
out 100 runs for a vector of length p =10.000. (b): Log-log plot of the runtime average
over 20 runs for POCS, Binary, Proj l1 l2 and Proj l1 for different value of p. For all the
experiments, the vector was drawn from a standardized normal distribution and τ was
set to 2.3.

SGCCA. This work was motivated by its application to Sparse Generalized Canoni-
cal Correlation Analysis (SGCCA), a multiblock component method. This method, fully
described in (Tenenhaus et al., 2014), is based on block relaxation to maximize a specific
cost function. At each block relaxation substep, an optimization problem similar to (1)
needs to be solved. Our algorithm (Proj l1 l2) has been embedded within the SGCCA
algorithm and has been compared to the original implementation with binary search. For
this experiment, we applied SGCCA to a 3-block dataset which combine gene expres-
sion (p1 = 15702), comparative genomic hybridization (p2 = 1229), and a qualitative
phenotype (p3 = 3) measured on a set of 53 children with glioma. The Glioma dataset
is freely available at http://biodev.cea.fr/sgcca/. For each of these two algorithms
SGCCA was run 20 times and converged in average at 10.48 (resp. 7.62s) with a standard
deviation of 0.60s (resp. 0.29s) for binary search (resp. Proj l1 l2) on midrange laptop
computer. We mention that the two implementations of the SGCCA algorithm converged
to the same solution.

5 Conclusion

We proposed a computationally efficient alternative to binary search and POCS algorithm
to solve optimization problem (1). This algorithm was then applied in the frame of
SGCCA.
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