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Résumé. Nous proposons une approche bayésienne pour détecter des points de rup-
ture multiples, dans un signal constant par morceaux corrompu par un biais fonctionnel.
Ce biais peut correspondre à des perturbations environnementales ou expériementales.
La partie constante par morceaux est exprimée comme le produit d’une matrice trian-
gulaire inférieure avec un vecteur parcimonieux. la partie fonctionnelle est exprimée
comme une combinaison linéaire de fonctions provenant d’un dictionnaire. Une approche
de sélection de variables “Stochastic Search Variable Selection” est utilisée pour obtenir
des estimations parcimonieuses des paramètres de segmentation (les points de rupture et
les moyennes des segments) ainsi que de la partie fonctionnelle. Les performances de la
méthode proposée seront illustrées sur des simulations, puis la méthode sera appliquée
sur deux jeux de données réelles dans les domaines de la géodésie et de l’économie.

Mots-clés. Segmentation, série corrompue, dictionnaire de fonctions, sélection de
variables, Stochastic search variable selection.

Abstract. We propose a Bayesian approach to detect multiple change-points in a
piecewise-constant signal corrupted by a functional part corresponding to environmental
or experimental disturbances. The piecewise constant part (also called segmentation part)
is expressed as the product of a lower triangular matrix by a sparse vector. The functional
part is a linear combination of functions from a large dictionary. A Stochastic Search
Variable Selection approach is used to obtain sparse estimations of the segmentation
parameters (the change-points and the means over the segments) and of the functional
part. The performance of our proposed method is assessed using simulation experiments.
Applications to two real datasets from geodesy and economy fields are also presented.

Keywords. Segmentation, Corrupted series, Dictionary approach, Stochastic search
variable selection.

1 Introduction

The problem of detecting multiple change-points in signals arises in many fields such as
biology (Boys and Henderson 2004), geodesy (Williams, 2003; Bertin et al., 2016), meteo-
rology (Caussinus and Mestre, 2004; Fearnhead, 2066; Wyse et al., 2011; Ruggieri, 2013)
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or astronomy (Dobigeaon et al., 2007) among others. In addition to change-points, we
may observe environmental or experimental disturbances (for instance geophysical signals
or climatic effects) which need to be taken into account in the models. Since the form of
these disturbances is in general unknown or partially unknown, it seems natural to model
them as a functional part that has to be estimated. Our goal in this article is to develop
a Bayesian approach that allows us to both estimate the segmentation part (the change-
points and the means over the segments) and the functional part. The Bayesian approach
has the advantage that expert knowledge can be introduced in the models through prior
distributions. This can be useful in multiple change-points problems where change-points
can be related to specific events such as instrumental changes, earthquakes, very hot years
or months or economic crisis for example. Moreover, posterior distributions allow us for
a quantification of the uncertainty, giving in particular posterior probabilities or credible
intervals for the positions of change-points or the functional part. This is of particular
interest for practitioners.

Several methods have been proposed in a Bayesian framework for the multiple change-
points problem. These methods are based, mostly, on reversible jump Markov Chain
Monte Carlo algorithms (Lavielle and Lebarbier, 2001; Boys and Henderson, 2004; Tai
and Xing, 2010), Stochastic search Variable Selection (Dobigeon et al., 2007), dynamic
programming recursions (Ruggieri, 2013) or non-parametric Bayesian approaches (Mar-
tinez and Mena, 2014 and references there in). All these Bayesian methods deal with the
multiple change-points problem but they do not consider the presence of functional dis-
turbances. However, as illustrated in Picard (2011) and Bertin et al. (2016) in simulation
and real examples, taking into account the functional part in the segmentation model
can be crucial for an accurate change-point detection and interesting information can be
extracted from the form of the functional part.

We propose a novel Bayesian method to detect multiple change-points in a piecewise-
constant signal corrupted by a functional part, where the functional part is estimated using
a dictionary approach (Bickel et al., 2009) and the segmentation part is treated as a sparse
problem. More precisely, concerning the segmentation, we follow Harchaoui and Lévy-
Leduc (2010) by expressing the piecewise constant part of the model as a product of a lower
triangular matrix by a sparse vector (which non-zero coordinates correspond to change-
points positions). In addition, the functional part is represented as a linear combination
of functions from a dictionary. Since a large variety of functions can be included in the
dictionary, this leads generally to a sparse representation of the functional part in terms
of functions from the dictionary. Hence, a Stochastic search Variable Selection approach
can be used to estimate the sparse vectors, that is, both the location of the change-points
and the functional part (Gearges and McCulloch, 1997).
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2 Model

2.1 Segmentation model with functional part

We observe a series Y = (Y1, . . . , Yn)′ that satisfies

Yt = µk + f(xt) + εt, ∀t ∈ Ik = (τk−1, τk], k ∈ {1, . . . , K}, (1)

where K is the total number of segments of the series is unknown, the εt are i.i.d centered
Gaussian variables with variance σ2, xt is a covariate (the simple one is the time t), f is
an unknown function to be estimated, τk is the kth change-point, µk is the mean of the
series on the segment Ik. We use the convention τ0 = 0 and τK = n.

A classical approach in non-parametric framework is to expand the functional part
f with respect to orthonormal basis, such as Fourier or wavelet ones (see Hardle et al.,
1998 and references therein). Following Bickel et al. (2009) or Bertin et al. (2016), we
choose here to adopt a dictionary approach, that consists in finding an over-complete
representation of f . More precisely, we expand f with respect to a large family of functions
(φj)j=1,...,M , named dictionary, that can for example be the union of two orthonormal basis.
Then f is assumed to be of the form

f(x) =
M∑
j=1

λjφj(x),

where λ = (λ1, . . . , λM)′ ∈ RM is a vector of coordinates of f in the dictionary and

(f(x1), . . . , f(xn))′ = Fλ,

where F is the n×M matrix F = (φj(xi))i,j. Note that since large dictionaries are consid-
ered, this allows us to obtain a sparse representation of the function f , that is the vector
λ is expected to be with few non-zero coordinates.

To estimate the change-points in the series, we follow the strategy proposed by Lévy-
Leduc (2010), which consists in reframing this task in a variable selection context. We
denote by X the n × n lower triangular matrix having only 1’s on the diagonal and be-
low it. We consider the n × 1 vector β with only K non-zero coefficients at positions
(τk + 1)k=0,...,K−1 with βτk+1 = µk+1 − µk and using the convention µ0 = 0. Note that the
segmentation (the change-points τk and the means µk) will be recovered by the vector β.

The model (1) can then be rewritten as follows

Y = Xβ + Fλ+ ε,

where ε = (ε1, . . . , εn)′. Our objective is now to estimate the parameters β, λ and σ2.
Since both β and λ vectors are expected to be sparse, we propose to use Bayesian methods
of variable selection for their estimation.

3



2.2 Bayesian hiercharchical framework

Following George and McCulloch (1993), we first introduce latent variables γ and r to
identify non-null components of the vectors β and λ. The vector γ = (γ1, . . . , γn) is such
that γi = I{βi 6=0}, where I denotes the indicator function and the vector r = (r1, . . . , rM)
satisfies rj = I{λj 6=0}. The number of non-zero coordinates of γ and r are dγ = K and dr
respectively. The product Xβ is equal to Xγβγ where Xγ is the n×dγ matrix containing
only the j columns of X such that γj is non-zero and βγ is a dγ×1 vector containing only
the non-zero coefficients of β. Similarly, we can express Fλ as Frλr where Fr is a n× dr
matrix and λr a dr × 1 vector. The model (1) can be then rewritten as

Y = Xγβγ + Frλr + ε

where the parameters to estimate are θ = {βγ ,γ, λr, r, σ2}.

Then, as usual in a Bayesian context, these parameters are treated as random vari-
ables, assumed here to be independent, and we consider the following prior distributions.
The γi are independent Bernoulli variables with parameter 0 ≤ πi ≤ 1 for i = 2, . . . , n
and with π1 = 1 by convention. The rj are also independent Bernoulli variables with
parameter 0 ≤ ηj ≤ 1 for j = 1, . . . ,M . Then the noise parameter follows a Jeffrey
distribution, π(σ2) ∝ σ−2. The conditional distribution of βγ |γ, σ2 is the classical g-prior

of Zellner (1986) given by βγ |γ, σ2 ∼ Ndγ
(

0, c1σ
2
(
X′γXγ

)−1)
. Finally the conditional

distribution of λr|r, σ2 is also a g-prior, with λr|r, σ2 ∼ Ndr
(
0, c2σ

2 (F′rFr)
−1).

The posterior distribution of θ has the following expression

π(θ|Y) =
π(Y|θ)π(βγ |γ, σ2)π(λr|r, σ2)π(γ)π(r)π(σ2)

π(Y)
, (2)

where

π(Y|θ) =

(
1

2πσ2

)n
2

exp

(
− 1

2σ2
(Y −Xγβγ − Frλr)

′ (Y −Xγβγ − Frλr)

)
.

3 MCMC Schemes

A classical approach for the computational scheme would be to estimate the whole pa-
rameters at the same time (βγ ,γ, λr, r, σ

2) using a Metropolis-within-Gibbs algorithm
combined with the grouping (or blocking) technique of Liu (1994). However, we will see
that two main drawbacks are associated with this algorithm. Therefore, we propose the
following two-step strategy: the first step aims at detecting the positions of the change-
points and at selecting the functions, that is, to estimate the latent vectors γ and r. To
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this end, the parameters βγ , λr and σ2 can be considered as nuisance parameters, and we
use the joint posterior distribution integrated with respect to βγ , λr and σ2. This can be
viewed as a collapsing technique, see Liu (1994) and van Dyk and Park (2008). In the
second part, we estimate βγ , λr and σ2, conditionally to γ and r. Some details of both
steps will be given during the presentation.

4 Simulation study, applications and discussion

The performance of our proposed method is assessed using simulation experiments. Dur-
ing the presentation, main results will be given.In particular, good results for both the
segmentation and the functional parts have been achieved.
Then we will show the results obtained on two real datasets: a GPS series from an Aus-
tralian station and a series of daily records of Mexican Peso/US Dollar exchange rate,
for which expected change-points are recovered. Moreover the benefits of the Bayesian
approach will be illustrated.
Eventually, our approach will be discussed.
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