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Résumé. Dans le cadre de l’évaluation des risques à horizon de temps fini, le problème peut
souvent se ramener à l’étude d’un vecteur C(N) = (C1, . . . , CN ), de taille aléatoire N , dont les
composantes sont des variables aléatoires issues du produit d’une matrice A(N), de dimension
aléatoire N × N par un vecteur X(N) de taille aléatoire N . Dans ce contexte, l’objectif est
alors de définir la propriété de variation régulière du vecteur C(N), d’étudier son comportement
extrémal, notamment par l’intermédiaire de sa queue de distribution et dans le même temps, de
développer des indicateurs de risque. Dans de nombreuses applications telles que l’assurance,
la finance ou encore en hydrologie, les indicateurs de risque peuvent être analysés à partir du
comportement extrémal de ‖C(N)‖, pour une norme ‖ · ‖ convenablement choisie. On propose
dans ce travail de généraliser le lemme de Breiman, qui permet d’obtenir un équivalent de la
queue de distribution de ‖C(N)‖, qui, selon la norme et la matrice considérées, donne lieu à
une estimation asymptotique d’indicateurs de risque tels que la probabilité de ruine à horizon
fini ou le temps passé au dessus d’un seuil pour de tels processus. Afin de mettre en avant notre
méthode, on applique notre résultat principal à un processus ”Shot Noise”.

Mots-clés. Théorie de la ruine, variation régulière multivariée, indicateurs de risque, Lemme
de Breiman, processus stochastiques, valeurs extrêmes, événements rares.

Abstract. When assessing risks on a finite-time horizon, the problem can often be reduced
to the study of a random sequence C(N) = (C1, . . . , CN ) of random length N , where C(N)
comes from the product of a matrix A(N) of random size N × N and a random sequence
X(N) of random length N . Our aim is to build a regular variation framework for such random
sequences of random length, to study their spectral properties and, subsequently, to develop
risk measures. In several applications, many risk indicators can be expressed from the extremal
behavior of ‖C(N)‖, for some norm ‖ · ‖. We propose a generalization of Breiman’s Lemma that
gives way to a tail estimate of ‖C(N)‖. To illustrate the applicability of our method, we apply
our main result for a class of stochastic processes - the Shot Noise Processes - to provide risk
indicators such as the tail index and the ruin probability on a finite-time horizon.

Keywords. Ruin theory, multivariate regular variation, risk indicators, Breiman’s Lemma,
asymptotic properties, stochastic processes, extremes, rare events.
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1 Motivation

Risk analyses play a leading role within many fields such as dietary risk, hydrology, nuclear
security, finance and insurance and is more and more present in the applications of various
probability tools and statistical methods; see [3], [1], [4] or [5]. Besides, risk theory typically
deals with the probability of occurrence of rare events which are functions of heavy-tailed random
variables, for example, sums or products of regularly varying random variables; see [7] and [10].
For instance, non-life insurance mathematics and dietary risk management both deal with a
particular kind of Shot Noise Processes (SNP) {S(t)}t≥0, defined as

S(t) =

N(t)∑
i=1

Xihi(t, Ti), t ≥ 0, (1)

where (hi)i≥1 are independent and identically distributed (i.i.d.) non-negative measurable ran-
dom functions called ”shock functions”, which are independent of the shocks (Xi)i≥1. The
”shock arrivals” (Ti)i≥1 are random variables (r.v.’s) independent of (Xi)i≥1 such that for all
i ≥ 1, Ti =

∑
1≤k≤i ∆Tk, where (∆Tk)k≥1 is a sequence of positive r.v.’s called ”inter-arrivals”

and N(t) = #{i : Ti ≤ t}. In this setup, we define the ruin probability on a finite-time horizon
of such SNP as the probability that the supremum of S exceeds a threshold on a time win-
dow [0, T ], for a given T > 0, which necessarily happens on the embedded chain - the process
{S(t)}t≥0 sampled at the shock arrivals T1, T2 . . . - and it is enough to study the discrete-time
random sequence S(N(T )) := (S(T1), S(T2), . . . , S(TN(T )))

′, which is of random length N(T ).
Then, instead of dealing with the extremal behavior of {S(t)}t≤T , we only need to understand
the extremal behavior of ‖S(N(T ))‖∞. We go further and point out that many risk measures
in non-life insurance mathematics and in dietary risk assessment can be analyzed from the tail
behavior of ‖C(N)‖ where C(N) = (C1, . . . , CN )′ is a random sequence of random length N
and ‖ · ‖ is a norm such that

‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1. (2)

Thus we consider discrete-time processes C(N) = (C1, . . . , CN ) where for all 1 ≤ i ≤ N , Ci ∈ R+

and N is an integer-valued r.v., independent of the Ci’s. We are interested in the case where
the Ci’s are regularly varying r.v.’s and we restrict ourselves to the process C(N) which can be
written in the form

C(N) = A(N)X(N), (3)

whereX(N) = (X1, . . . , XN )′ is a random length sequence with identically distributed marginals,
which are not necessarily independent and A(N) is a random matrix of random size N×N inde-
pendent of the Xi’s. However, X(N) and A(N) are still dependent through N , which determines
their dimensions. Our main objectives are to define regular variation properties for a random
length sequence of random variables and to study its spectral properties in order to develop
risk measures. As it will become clear later, the randomness of the size N of the vector C(N)
makes it difficult to use the common definition of multivariate regular variation in terms of vague
convergence; see [6]. We tackle the problem using the notion of M-convergence introduced re-
cently in [9] and the use of a norm satisfying (2) that allows to build regular variation via polar
coordinates. A main difference with the finite-dimensional case is that the choice of the norm
matters as it determines the infinite-dimensional space to consider; see [2], [12] and [13].
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2 Framework and assumptions

We require the following conditions. For α > 0 and ε > 0, we assume

(H0) Length: N is a positive integer-valued r.v. such that E[N ] > 0 and E[N1+α+ε].

(H1) Regular variation: (Xi)i≥1 are identically distributed r.v ’s with mean γ, cumulative

distribution function (c.d.f.) FX , integrated tail distribution F IX , such that the survival
function FX = 1− FX is regularly varying with index α > 0, denoted X ∈ RV−α.

(H2) Uniform asymptotic independence: For i, j ≥ 1, we assume

sup
i 6=j

∣∣∣∣P(Xi > x,Xj > x)

P(X1 > x)

∣∣∣∣ −→x→∞ 0.

(H3) Regularity of the norm: The norm ‖ · ‖ satisfies ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1.

(H4) Tail condition on the matrix A(N): The random entries (ai,j)1≤i,j≤N of A(N) are
independent of the (Xi)1≤i≤N . Moreover, we assume that E[‖A(N)‖α+εN1+α+ε] < ∞,
where ‖ · ‖ also denotes the corresponding induced norm on the space of N -by-N matrices.

(H5) The matrix A(N) is not null.

We first need to define regular variation for any X(N) = (X1, X2, . . . , XN )′ when N is an
integer-valued random variable. We work on the space c‖·‖, defined below.

Definition 1. The space c‖·‖ is the completion of c00 in (R+)N equipped with the convergence
in the sequential norm ‖ · ‖.

In the following, we denote by {0} = (0, 0, . . .) the null element in c‖·‖, ej = (0, . . . , 0, 1, 0, . . .) ∈
c‖·‖ the canonical basis of c‖·‖ and S(∞), the unit sphere over c‖·‖ defined as S(∞) = {X ∈ c‖·‖ :
‖X‖ = 1}. As c‖·‖ is a Banach space, the notion of weak convergence holds on c‖·‖ and one can
also define regular variation as in [6].

Proposition 2. A sequence of random elements X(N) = (X1, X2, . . . , XN )′ ∈ c‖·‖\{0} for N
satisfying (H0) is regularly varying if the random variable ‖X(N)‖ is regularly varying and

L
(
‖X(N)‖−1X(N) | ‖X(N)‖ > x

)
−→
x→∞

L(Θ(N)),

for some random element Θ(N) ∈ S(∞). The distribution of Θ(N) is the spectral measure of
X(N).

It means that the regular variation of X(N) is completely characterized by the tail index α
of ‖X(N)‖ and the spectral measure of X. Notice that Θ(N) ∈ S(∞) is an infinite-dimensional
sequence Θ(N) = (Θ1(N),Θ2(N), . . .). The following proposition is relevant to prove Theorem
6. It is a first example of such regularly varying random sequence of random length under (H3).
Besides, it is an extension of Lemma A6 in [14].
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Proposition 3. Let X(N) = (X1, . . . , XN ) ∈ c‖·‖ such that (H0)-(H3) hold. Then we have

lim
x→∞

P(‖X(N)‖ > x)

P(X1 > x)
= E[N ] > 0. (4)

We conclude this section by characterizing the spectral measure of X(N). Note that when
N = n for a fixed n ≥ 1, it follows that for all 1 ≤ j ≤ n, P(Θ(n) = ej) = n−1.

Proposition 4. If (H0)-(H3) hold then X(N) = (X1, . . . , XN ) ∈ c‖·‖\{0} is regularly varying
in the sense of Proposition 2 and its spectral measure is characterized by

P(Θ(N) = ej) =
P(N ≥ j)
E[N ]

, j ≥ 1.

3 Main results

We generalize the previous approach to sequences in c‖·‖ defined by the matrix product (3).

Theorem 5. Let C(N) be a random length sequence defined as in (3). Assume that (H0)-(H4)
hold. Then, we have

lim
x→∞

P(‖C(N)‖ > x)

P(X1 > x)
= E

[
N∑
k=1

‖Ak(N)‖α
]
. (5)

Notice that Theorem 5 holds if A(N) does not necessarily satisfy (H5) and then we allow
that P(‖C(N)‖ > x)/P(X1 > x)→ 0 when x goes to infinity. Under the additional assumption
(H5), we are now ready to prove that C(N) is regularly varying.

Theorem 6. Let C(N) be a random length sequence defined as in (3). If (H0)-(H5) hold,
then C(N) is regularly varying and its spectral measure is given by

P
(
‖C(N)‖−1C(N) ∈ · | ‖C(N)‖ > x

)
−→
x→∞

E
[∑N

k=1 ‖Ak(N)‖α11‖Ak(N)‖−1Ak(N)∈·

]
E
[∑N

k=1 ‖Ak(N)‖α
] . (6)

Although the characterization is common for any norm such that (H3) holds, the result
essentially depends on the choice of the norm. Despite this remark, it is noteworthy that the
spectral measure can be described in a unified way even if it belongs to different spaces, regarding
the choice of the norm.

4 Applications

We finally provide quite a few examples to see the applicability of our method. We assume in
this section that α ≥ 1, for all i ≥ 1, t > 0, there exists ε > 0 such that E[hα+εi (t, Ti)] <∞ and
N := N(t) is an Poisson process with intensity function (resp. cumulative intensity) λ(t) (resp.
m(t)). The computation of the constant E[

∑N
k=1 ‖Ak(N)‖α] for different norms and different
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matrices A(N) allows to develop various risk measures. Altough C(N) defined as in (3) covers
a wide family of processes, we only deal here with a particular class of Shot Noise Processes
defined as in (1). We first apply our main result to determine their extremal behavior as a
corollary of Theorem 5.

Corollary 7. Under (H1)-(H2), assume that the random functions hj(T, ·)’s are i.i.d., inde-
pendent of the Tj’s and integrable of order p > α, then we have

lim
x→∞

P(S(T ) > x)

P(X1 > x)
= m(T )E[hα1 (T, V1)],

where V1 admits the density λ(t)/m(T ), 0 ≤ t ≤ T .

This corollary plays a leading role to determine the following risk indicators. Besides, we
recover the recent results of [14] and [8] on the tail behavior of {S(T )}T≥0. We now deal with
finite-time ruin probability ψ of (1), which we define as the probability that S(t) exceeds some
given threshold x ∈ R+ on a period [0, T ], i.e. ψ(x, T ) = P(sup0≤t≤T S(t) > x).

Corollary 8. Assume that the conditions of Corollary 7 hold. If hj(·, T ) is a non-increasing
function for any T > 0, then,

lim
x→∞

ψ(x, T )

P(X1 > x)
= m(T )E[hα1 (V1, V1)].

Notice that if hj(·, T ) is a non-decreasing function for any T > 0, then the maximum of the
SNP is achieved at time T and the ruin probability can be computed thanks to Corollary 7.
We finally propose two indicators to supplement the information given by the ruin probability
and the tail behavior. The ruin probability permits to know if the process has exceeded the
threshold but provides no information about the exceedances themselves or about the duration
of the exceedances. To fill the gap, we first bear our interest on the Integrated Expected Severity
(IES(x)), which deals with the average of the cumulated exceedances when the process is over
the high threshold x on a time window [0, T ]. It is defined for all T > 0 by

IES(x) :=

∫ T

0
ES(x)dt, x > 0.

and then we focus on the ”Expected Time Over a threshold” (ETOT(x)), which provides infor-
mation about how long the process stays, in average, above a threshold x, knowing that it has
already reached it. It is defined for all T > 0 and x > 0 by

ETOT (x) := E

 T∫
0

11{S(t)∈]x,∞[}dt | max
0≤t≤T

S(t) > x

 .
Proposition 9. Assume that the conditions of Corollary 7 hold. The IES is given by

IES(x) ∼
x→∞

γ

T∫
0

E[N(t)]E [hα1 (t, V1)] dt F IX(x),
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and the ETOT(x) is given by

ETOT (x) ∼
x→∞

T∫
0

m(t)E[hα1 (t, V1)]dt

m(T )E[hα1 (V1, V1)]
.

To conclude, in many configurations, we can explicitly derive E
[∑N

k=1 ‖Ak(N)‖α
]
, especially

with respect to ‖ · ‖1 and ‖ · ‖∞ which provide interesting equivalents to obtain risk indicators.
We used it to get equivalents of the tail behavior, the ruin probability, the ETOT and the IES
but our result can also be applied to many other risk measures and to other stochastic processes
regarding the choice of the norm and the matrix A(N).
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